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Purpose:
(1) Develop a deep learning model to automatically segment the tibia
(2) Validate the automatically-derived biomarkers of cortical porosity and 

geometry compared to age, osteoporotic status, and BMD

Background
Clinical Assessment of Osteoporosis (OP)

• From 1990-2019, there was a 33% increase in bone fractures, and a 65% increase in fracture-related disability1

• Clinical diagnosis of OP is made via DXA, or Dual-energy X-ray absorptiometry
• DXA has high specificity, but it suffers from very low sensitivity for predicting osteoporotic fracture2

• DXA cannot differentiate trabecular bone from cortical bone (CB), nor can it measure bone material properties, 
which are the chief determinants of bone strength3,4

Cortical Bone Imaging

• Osteoporosis medications are known to affect the cortical and trabecular compartments differently5

• CB contains ultrashort T2* species: (1) Bound water (T2* = 390 µs) 7 and (2) Pore water/lipid (T2* = 1-1000 ms)8

In a prospective study of 7,000 participants, imaging assessment of cortical bone porosity and 
geometry were predictive of fracture independent of age, sex, height, weight, and BMD6

Solid-state MRI (SS-MRI) enables acquisition of previously undetectable ultrashort T2* species,
thus, enabling quantitative assessment of cortical bone microstructure (porosity).
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Image Results

Figure 1: Representative images compared between the three groups. The bottom 
row displays segmentation accuracy. Green indicates overlapping voxels labeled 
between manual segmentation and model prediction, whereas red were solely from 
manual labeling, and yellow were solely from model prediction.

Figure 2: Representative colored porosity parameter maps displayed for the same 
participants shown at the top. Note the spatial agreement between the porosity 
parameters of Pore Water and Suppression Ratio, with increasing porosity with age 
and with osteoporosis.
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Conclusion
• Deep learning enables fast, accurate segmentation of cortical bone

• Segmentation failures were attributed to scanning errors and not model errors
• Automated biomarkers detected osteoporosis-related impairments in cortical porosity and geometry
• Suppression Ratio biomarker enables calibration-free quantification of cortical porosity in vivo
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Study Design and Methods

Bone Water Quantification

Bone signal is calibrated via reference sample

C is the molar concentration (moles/L), I is the image 
intensity, and F is a mapping function for the fraction of 
magnetization when RF duration is comparable to T2* 7,9

• Porous bone will have more pore water and less bound 
water, corresponding to greater Suppression Ratio10

• Larger pores have longer T2, which improves the 
efficacy of the adiabatic Inversion Recovery long-T2 
suppression (IR-rUTE), which further increases 
Suppression Ratio10

Suppression Ratio Quantification
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However, analysis requires accurate segmentation of periosteum and endosteum 
which is very time consuming (~80 minutes per scan). 

Training and Test 
Dataset

Training data:  48 scans (*46 slices) = 2208 slices
Validation data:  7 scans (*46 slices) = 322 slices
Test data:   28 scans (*46 slices) = 1288 slices

Figure 3: Segmentation accuracy for deep learning segmentation. Note the 
three outliers plotted as colored boxes, with their corresponding images 
displayed below. The pink arrows show clear motion artifacts while the other 
two depict scanning failures in the IR-UTE sequences.

Figure 4: Associations between cortical bone porosity biomarkers obtained 
from manual segmentations and from automated deep learning 
segmentations.
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