Automated Respiratory Pattern Analysis for Dynamic MRI of the Lung with Post COVID-19 at 0.55T
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INTRODUCTION

* Post COVID-19, some patients experienced long COVID demonstrating respiratory symptoms, Results: Motion Field Results: Automatic
] , . , _ _ Estimation Segmentation for 2 patients
including but not limited to breathlessness. Currently, there is a lack of non-invasive approaches —
Mask 1 Overlap of masks Mask 2 Ground Truth Label Hard Prediction

RESULTS

for quantitatively describing the patterns of respiration in such patients.

* This research introduces a deep learning-assisted framework named "Automated Detection of
Localized Motion in Lung MRI" which centers on the analysis of motion fields for individual pixels
within distinct local regions of lung MRiIs.
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Mask 1 and Mask 2 are passed to registration algorithm. Overlap

* The findings of this analysis can be subsequently leveraged to categorize post covid-19 patients as of masks shows the difference between the two masks.
either having Long COVID or exhibiting no symptoms through the examination of these localized Mask 2 Overlap of masks ~ Warped Mask

Ground Truth Label Hard Prediction

motion fields.
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METHODS

Pipeline for Automated Respiratory

Warped Mask is the output of the registration algorithm. It should
equal Mask 2. Note that both masks are overlapping correctly.

. : Direct transform inverse transform Results: Pixelwise Y Motion visualization
Pattern Analysis for Dynamic Lung MRI Mappings generated : :
by the algorithm. for patients from different groups
1. Automatic Segmentation Module (ALS): It uses T Direct transform
UniverSeg Model to Segment Iungs from Lu ng EE:: 1¥ __,.‘: EE:”C}-— > <Pd‘t.ﬁ__‘: converts Mask 2 to [GroupO:YMotionoerft lung bottom pixels ] [Group1:YMotionoerftIungbottom pixels ] [GTOUP2=YMOtiOﬂ°f|eft|ungb°tt0mpiXE|S ]
MRI —-H j~:: wHBE HE Mask 1. Inverse | |
S A [ P R I~ | transforms Mask 1 1 l NI oA
H to Mask 2. ’ \ | W | M L ,
2. Motion Field Estimation (MFE): It uses w U L | | 17 ) ITWIN,
l SymmetriC lefeomorphism tO Compute mOtIOFI o.();/Esualization of RMSE for the :/Dvarped masks across patients Visualization of Dice Score fort_he_warped masks across patients :3 11 \‘ ' 'u‘ : “‘ | “ M (.}' L‘ | 51 . - ‘  | vm ’?5_'___«“{‘&1‘!} ] " \ ‘.‘ Y 3‘:
fields between tWO frames [Patié?:{ézi?ilg;ﬁ} o 0 50 100 150“ 200 250 | 0 50 .’ 150 200 50 - 0 '5'0 160. 150 200 250
3. Local Motion Quantitative Motion Analysis £

(LMQA) Incoherence Computation: 0 ° .

l | Y 0.970 1 01 AN MG . I 5;’5\1‘ ":. ‘ | .
: - o 57 I =1 M R 5 ‘
Y. P°| MF(i  step) — MF(i * step + t)| : 'l IRE YR IEER 1 AT
InC(t) —_ l—o a4 | N ‘ | UH “ 2 ) [ I \. “ ‘;1 X v ; l.‘.‘_';i ‘. W N “ Bt ~’ ,A‘ VNI
vy 1 | | : 1 L W 7 R 2 ‘AR Y N 1
Nsteps x Avg(MF) 003 0960 e Screfor N i ] TRYAR. "A TESRAA LA ARadl
_L - o i =0. L | | I ‘ I | ol | ¢ % = . v
— MF: Motion Estimation of a particular pixel across all frames T T O I S N
— Nsteps: Total number of all frames
— step: step size (eg. it can be set to 1)

— Avg(MF): Mean or Average of the Motion Field (MF) RESUltS' Incoherence

— t: Motion Curve time period.It is found by performing exhaustive
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(ALS), the Motion Field Estimation module (MFE), Local Motion Quantitative Analysis module i i
(LMQA). Incoherence visualization for patients from different groups

Group 0 Patient: Pixelwise Incoherence Map Group 1 Patient: Pixelwise Incoherence Map Group 2 Patient: Pixelwise Incoherence Map

* In the ALS module, a fine-tuned UniverSeg: Universal Medical Image Segmentation model is \
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employed. UniverSeg is a pre-trained model capable of executing medical image segmentation S
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tasks on various organs by utilizing limited support images and labels without any training on the
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current dataset.
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* Inthe MFE module, Symmetric Diffeomorphism was utilized to estimate the motion field for each
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pixel within the reference frame. This estimation was achieved by computing the cumulative
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motion field between the lung mask of frame 1 and the lung masks of subsequent frames (frame

2, 3, and so forth). Additionally, each pixel in the mask is tracked throughout all frames, and the DlSCUSSlON & CONCLUS'ON
pixel-wise motion field is computed using cumulative motion fields generated previously.
This study proposed a novel motion detection framework named "Automated Detection of Localized Motion in Lung MRI."

This fully automated pipeline differentiates between patients with Long COVID and those displaying No Symptoms by
scrutinizing the motion fields of individual pixels of the lungs.

 In the LMQA module, the incoherence of the motion of every pixel of the mask across all frames
is computed. As depicted in the pipeline diagram above, incoherence gauges how far a specific

curve is from being periodic.
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