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Abstract Experimental setup Transferring knowledge from BI-RADS classifier

Considering the correlation between breast density and overall BI-RADS, we
applied the idea of transfer learning to accelerate learning of our breast
density prediction network. We used the weights of our model previously
trained for breast cancer screening Geras et al. [2017] to initialize the
parameters of the network trained for breast density prediction. The two
networks have an identical architecture, except for the softmax layer.

The models trained with such initialization perform better than their
counterparts trained from scratch in almost all metrics, however, only by a
small margin. Intriguingly, models initialized with parameters of a previously
trained overall BI-RADS classifier achieve the best performance in much
fewer numbers of training epochs: 20 instead of 50 when using 1% of the
original training data 15 instead of 25 when using 10% of the original
training data.

We sorted the patients according to the date of their latest exam and divide
them into training (first 80%), validation (next 10%) and test (last 10%)
sets. For the test phase, we kept only the most recent exam for each patient.
This way of partitioning the data allows us to estimate performance of our
classifiers on future data accurately.

Our primary metric in this work is the standard classification accuracy. As
the levels of breast density correspond to relative increases in the amount of
fibroglandular tissue, two consecutive labels can be confused even by an
experienced radiologist. This is why we also considered top-k accuracy. In
this metric we consider a prediction to be correct if the ground truth is
among the k most likely labels predicted. Additionally, we also considered
accuracy only between the two superclasses: “dense” (classes 2 and 3)
versus “not dense” (classes 0 and 1). Secondly, we evaluated our models
with respect to the area under the ROC curve (AUC). We computed AUCs
for all four binary problems of distinguishing between one of the density
categories and the rest of the density categories, and then took the macro
average, abbreviated as macAUC.

Breast density classification is an essential part of breast cancer screening.
Although a lot of prior work considered this problem as a task for learning
algorithms, to our knowledge, all of them used small and not clinically
realistic data both for training and evaluation of their models. In this work,
we explored the limits of this task with a data set coming from over 200,000
breast cancer screening exams. We used this data to train and evaluate a
strong convolutional neural network classifier. In a reader study, we found
that our model can perform this task comparably to a human expert.

Data

We used a clinically realistic data set of over 200,000 screening
mammography exams, each containing at least four images corresponding to
the standard four views used in screening mammography Geras et al. [2017].
Each exam is assigned a BI-RADS label indicating a diagnosis of a
radiologist. We supplemented this data with labels corresponding to breast
density, which we extracted from the textual reports associated with the
exams in our data set.

Comparison to human performance

To understand what the limit of performance possible to achieve on this task
is, we conducted a reader study with human experts with different levels of
experience. The three participants in our reader study were: a medical
student (S), a radiology resident (R) and an attending radiologist (A). The
experts were all shown the same 100 exams randomly drawn from the test
set. For each exam, the experts were asked to rank the breast density classes
from the most likely to the least likely according to their judgement.
Additionally, we computed analogous values with only two supercalsses.
Both human experts and learning models achieve a fair agreement with the
labels in the data. Note that the agreement between the predictions of our
model and the labels in the data are of similar magnitude to the agreement
between the humans themselves.
We also compared our best CNN model to an average of the predictions of
human experts. We achieved that by treating predictions of experts as
one-hot vectors and averaging them. In this experiment the humans achieved
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Agreement (Cohen's kappa) in choosing the most likely class between different
readers (S, R, A), our neural network (N), our baseline (H) and labels in the

data set (L).
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L N H S R A

L] 0.610.39 0.41 0.55 0.39
N 0.58 0.53 0.60 0.48
H| 0.28 0.37 0.34
S 0.65 0.48
R 0.43
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ROC curves for all four classes. The classes 1 and 2 are the hardest for a neural
network to distinguish from the rest. The AUC values are 0.955, 0.888, 0.907,
0.960 for classes 0, 1, 2, 3 respectively.
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Examples of the four breast density classes.

Impact of the size of the data set Agreement (Cohen's kappa) in distinguishing between dense breasts (classes 2
and 3) and not dense (classes 0 and 1) between different readers (S, R, A), our
neural network (N), our baseline (H) and labels in the data set (L).
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L] 0.650.50 0.50 0.73 0.46
N 0.72/0.62 0.83 0.57
H| 0.48 0.69 0.48
S 0.69 0.64
R 0.60

To explore the effect of data set scale, we trained separate networks on
training sets of different sizes; 100%, 10% and 1% of the original training

set. Interestingly, even though training with more data increases performance
in all metrics, the difference is not large.

Deep convolutional neural network

We used a multi-column deep convolutional neural network of an
architecture loosely inspired by the earlier work of Simonyan and Zisserman
[2015]. The input to the network is four 2600 x 2000 images
corresponding to the standard views used in screening mammography. It is
very similar to the architecture in Geras et al. [2017] with the exception of
the number of the outputs in the softmax layer.

Performance of our CNNs. The * symbol in the leftmost column indicates that
a model was initialized using weights of a previously trained overall BI-RADS
classifier.

data |macAUC|top-1 top-2 |top-3 |superclass
1% 0.888  [0.729 0.967]0.998|0.849
10% |0.907 |0.745 0.976/0.999|0.856
100%/0.916  |0.767 0.982/0.999|0.865 References
*1% 10.892 |0.733 0.974/0.998|0.848
*10%(0.909 |0.753 0.980/0.998|0.856

Classifier p(y|x)
Fully connected layer (1024 hidden units)
Concatenation (256 x4 dim)
DCN DCN DCN DCN
L-CC R-CC L-MLO R-MLO

An overview of the structure of the convolutional neural network used in our
experiments. DCN denotes a series of convolutional and pooling layers.
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