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1. INTRODUCTION = T, relaxation time is a highly efficient biomarker of muscle health, being sensitive to both macro- and microstructural changes in muscle tissues, which can be caused by various muscle dystrophies,
inflammatory processes, or neuromuscular disorders®?.

" These diseases result in an infiltration of subcutaneous fat and a corresponding loss of muscle volume, leading to a mixture of two tissue types, fat and muscle, and results in the appearance of two T, components in each imaged voxel.
= (Quantification of these fat and water components holds great diagnostic and prognostic value by allowing an accurate assessment of the muscle status and the stage of the disease.

= Achieving a reliable quantification of single- T, values in clinical setting is a challenging task due to the bias of fast Multi Spin-Echo (MSE) protocols by stimulated and indirect echoes®. The Echo-Modulation-Curve (EMC) algorithm‘h5 can overcome
these limitations and deliver accurate and reliable maps of the true tissue T, values, independent of the scanner and protocol-implementation®.

= In this work, an extension of the EMC algorithm for two-component fitting is presented, simultaneously estimating sub-voxel water and fat fractions, along with the T, and Proton Density (PD) corresponding to each component.

2. METHODS: EMC Algorithm 3. RESULTS
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4. CONCLUSIONS " The ability to quantify sub-voxel tissue components is highly valuable for clinical applications.
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