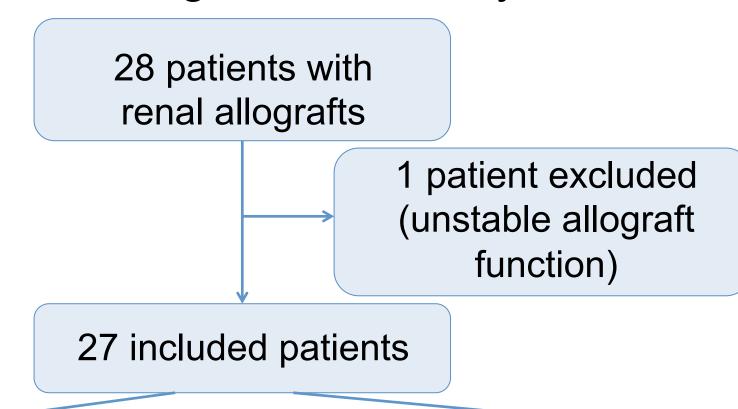
$T_{1\rho}$ mapping for assessment of fibrosis in renal allografts

Icahn School
of Medicine at
Molecular Imaging
Institute

Stefanie Hectors^{1,2}, Octavia Bane^{1,2}, Paul Kennedy^{1,2}, Fadi El Salem³, Madhav Menon⁴, Maxwell Segall^{1,2}, Rafael Khaim⁴, Veronica Delaney⁴, Sara Lewis^{1,2}, Bachir Taouli^{1, 2}

¹Radiology,²TMII, ³Pathology, ⁴Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai

INTRODUCTION

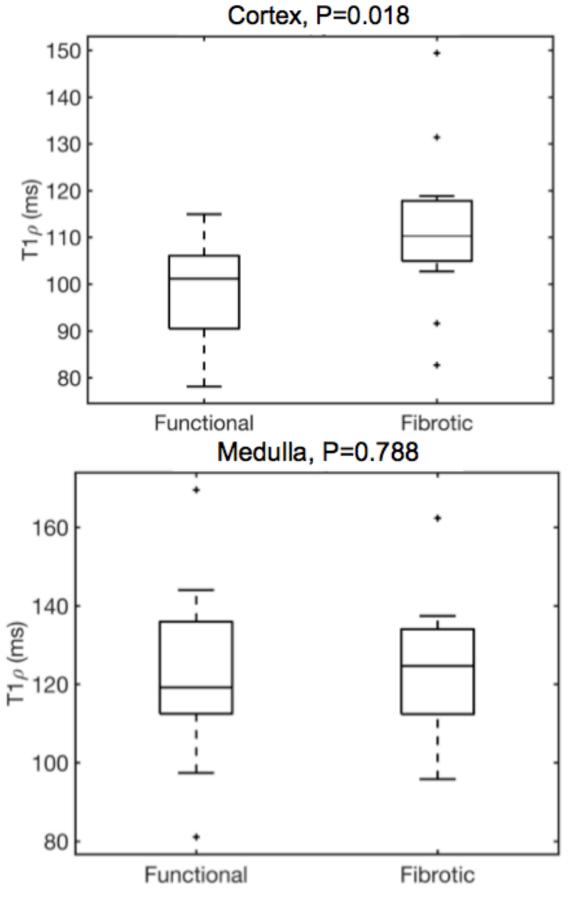

- Renal fibrosis, associated with the deposition of collagen in the cortical interstitial space, is considered an important predictor for allograft prognosis and can be used to adapt treatment.
- $T_{1\rho}$ mapping, which is sensitive to the interactions between water molecules and macromolecules including collagen, may be a suitable MRI technique for noninvasive assessment of renal fibrosis.
- While $T_{1\rho}$ has shown to be sensitive to the degree of fibrosis in the liver^{1,2}, there are no reports in which $T_{1\rho}$ is assessed as potential biomarker for prediction of fibrosis in the kidney.

Objective:

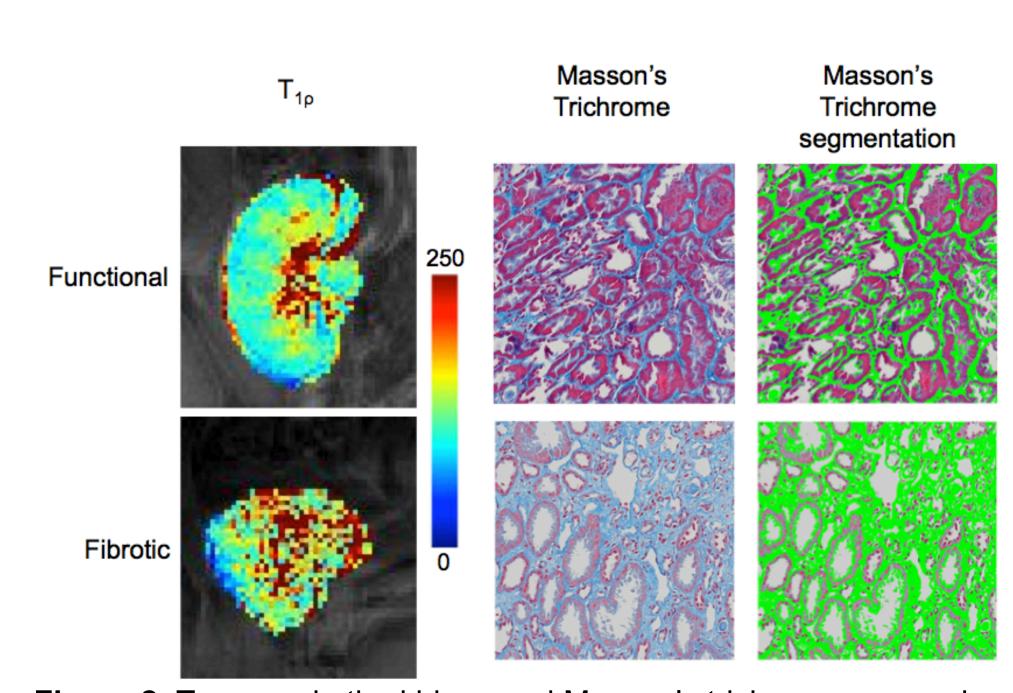
To investigate the utility of $T_{1\rho}$ MRI for the assessment of fibrosis in renal allografts.

METHODS

Prospective IRB-approved single center study


15 patients with stable allograft function M/F 9/6, mean age 56 y (28–68y)
Average GFR 71.1 (50.1–108) ml/min/
1.73 m²

12 patients with chronic allograft dysfunction and biopsy-confirmed fibrosis
M/F 6/6, mean age 51 y (27–69y)
Average GFR 30.1 (11.3–68.3) ml/min/1.73 m²


- T_{1p} mapping at 1.5T during 4 x 10 s breath holds in a single coronal slice
 - Spin-lock prepared FLASH sequence
 - Spin-lock strength 500 Hz
 - Spin-lock time 4.8, 9.6, 19.2, 38.4 ms
- Repeatability of $T_{1\rho}$ measurement, as determined by coefficient of variation (CV) measurements, was tested in 4 patients (time between scans 17-45 days)
- Average T₁₀ values in ROIs in renal cortex and medulla recorded
- In 16 patients who had renal biopsy within 1 year of the MRI exam, collagen content was assessed by quantitative analysis of Masson's trichrome stained sections.
- Statistical analysis
 - Mann-Whitney U tests to assess differences in $T_{1\rho}$ between stable and fibrotic allografts
 - ROC analysis to determine diagnostic performance of $T_{1\rho}$ for differentiation between functional and fibrotic allografts
 - Spearman correlation analysis to determine association of $T_{1\rho}$ with estimated glomerular filtration rate (eGFR) and histopathological collagen measurement

RESULTS

- $T_{1\rho}$ measurements were more repeatable in the cortex than in the medulla (mean CV $T_{1\rho}$ cortex 7.4%, medulla 13.3%).
- While T_{1ρ} values in the medulla were not significantly different between functional and fibrotic allografts, significant differences were observed in the cortex (**Fig. 1**).
- Representative T_{1p} maps and Masson's trichrome images and segmentations of functional and fibrotic allografts are shown in **Fig. 2**.
- Cortical $T_{1\rho}$ measurements were significantly negatively associated with eGFR (**Fig. 3A**) and significantly positively associated with Masson's trichrome stained fractions (**Fig. 3B**).

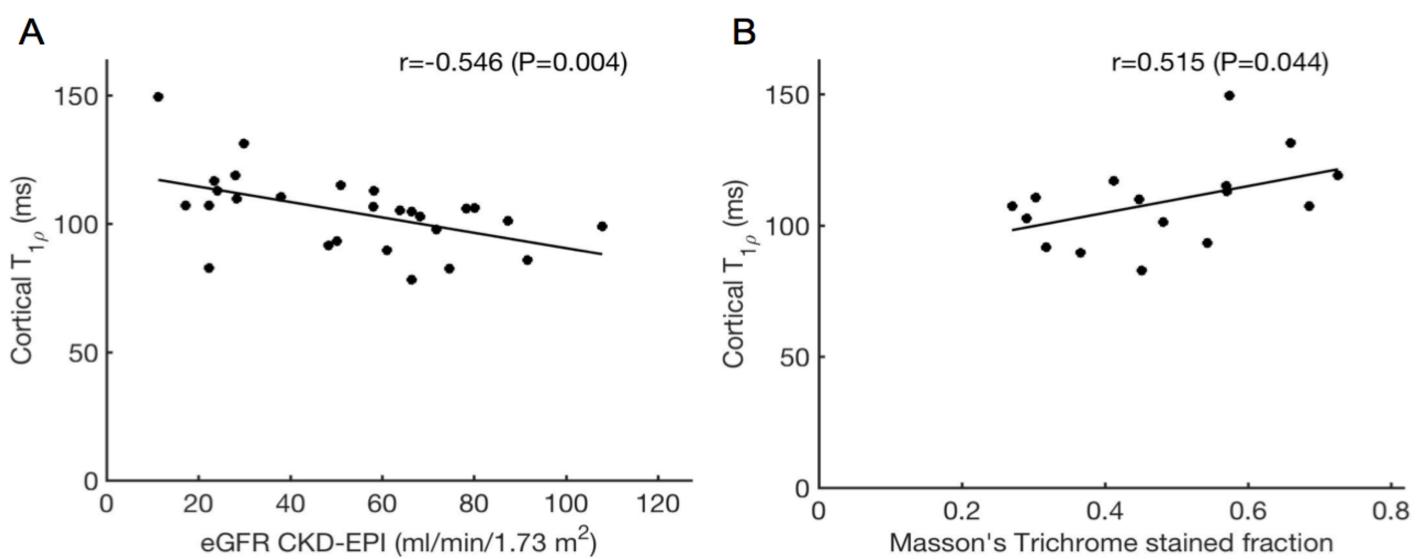


Figure 1. Boxplots of T_{1p} values in the renal cortex (top) and medulla (bottom) of functional (n=15) and fibrotic (n=12) allografts.

Figure 2. T_{1p} maps in the kidney and Masson's trichrome processing. *Top* 55 year-old female patient with functional kidney allograft (eGFR=87.4 ml/min/1.73 m²). Cortical and medullary T_{1p} values were 101 and 120 ms, respectively. The stained fraction derived from the Masson's trichrome stained section was 0.48.

Bottom 59 year-old female with fibrotic renal allograft (eGFR=29.8 ml/min/1.73 m²). Cortical and medullary T_{1p} values were 131 and 132 ms, respectively. The stained fraction derived from the Masson's trichrome stained section was 0.66.

Figure 3. Correlation plots of cortical T_{1p} with CKD-EPI eGFR measurements (n=27) and Masson's Trichrome stained fractions (n=16).

CONCLUSIONS

- In this preliminary study, we observed significant elevation of cortical $T_{1\rho}$ in fibrotic renal transplants.
- The significant correlation between cortical $T_{1\rho}$ and Masson's trichrome stained fraction suggests a direct association of cortical $T_{1\rho}$ with collagen content.

REFERENCES

- 1. Allkemper et al. Radiology 2014;271(2):408-415
- 2. Wang et al. Radiology 2011;259)3):712-719