Magnetic resonance elastography vs. point shear wave ultrasound elastography for the assessment of renal transplant fibrosis

Mount Sinai

Icahn SchoolTranslational andof Medicine atMolecular Imaging Institute

Paul Kennedy^{1,2}, Octavia Bane^{1,2}, Sonja Gordic^{1,2}, Stefanie Hectors^{1,2}, Mark Berger^{1,2}, Jeff Zhang³, Veronica Delaney⁴, Madhav Menon⁴, Fadi El Salem⁵, Sara Lewis^{1,2}, Bachir Taouli^{1,2}

¹TMII, ²Radiology, ⁴RMTI; Icahn School of Medicine at Mount Sinai. ³Radiology, University of Utah

INTRODUCTION

• Renal transplant is treatment of choice for end stage renal disease, however a high proportion of transplant recipients experience at least one episode of transplant dysfunction¹

RESULTS

- MRE successful in all patients, pSWE unsuccessful in 1 patient
- MRE and pSWE stiffness measurements are shown in Table 1
- Example MRE and pSWE acquisitions are shown in

- Monitoring of transplant recipients may provide early indications of dysfunction – biopsy is not a practical surveillance tool due to sampling variability and risks
- MR elastography (MRE) and ultrasound point shear (pSWE) allow noninvasive elastography wave assessment of tissue mechanical properties and have been shown to be feasible in measuring renal transplant fibrosis²⁻⁴

Objective

METHODS

- Investigate whether MRE and pSWE can differentiate functioning chronically stable between and dysfunctional allografts
- Assess association between MRE and pSWE and histopathological scores, DCE-MRI derived parameters, and clinical outcomes

Figure 1

 No significant difference between groups when analyzing all data. Reliable MRE measures showed (p=0.038). No significant difference in groups difference was found in in pSWE reliable measures

(Figure 2)

• MRE correlated with GFR (r=-0.477, p=0.034; Figure 3) and time since transplant (r=0.464, p=0.040)

Figure 1: Example images of MR elastography (top) and pSWE (bottom). MR elastography images depict magnitude, wave image propagation and stiffness map with overlaid confidence map signifying areas of reliable measurement. pSWE measurements were performed in upper, middle and lower poles.

- MRE negatively correlated with DCE-MRI measured MTT in the vascular compartment (r=-0.745, p=0.008; Figure 3)
- MRE correlated with Banff inflammation in areas of interstitial fibrosis and tubular atrophy (i-IFTA) and arteriolar hyalanosis (ah) scores, pSWE correlated with Banff cv (r=0.797, p=0.018)

Modality	Ν	Stable (kPa)	Dysfunction (kPa)	р
MRE - all	24	5.54±1.47	7.15±2.37	0.069
pSWE - all	23	13.21±4.64	13.78±2.46	0.516
MRE - reliable	20	5.22±0.83	7.15±2.37	0.038
pSWE - reliable	11	13.19±2.64	14.92±2.82	0.201

Table 1. MRE and pSWE stiffness (mean \pm SD) of stable and chronically dysfunctional patients. Results from all measurements and only reliable measurements are presented.

CONCLUSIONS

Reliable MRE measures show a significant stiffness increase

in chronically dysfunctional allografts compared to stable

pSWE produces a high proportion of unreliable measures

Increasing stiffness in dysfunctional allografts previously

MRE

- 24 kidney Tx patients prospectively enrolled 15 stable function (M/F 9/6, eGFR 65.9±12.6 ml/min/1.73m²) and 9 with chronic dysfunction (M/F 4/5, eGFR 29.4±16.3) $ml/min/1.73m^{2}$)
- 1.5T MRE and pSWE performed on same day. DCE-MRI 12 with eGFR>30 in patients acquired $ml/min/1.73m^2$
- Biopsy obtained in 13 patients (4 stable, 9 dysfunction) within 1 year of imaging
- MRE data reconstructed inline by a commercially available inversion algorithm⁵. ROIs corresponded to areas of reliable stiffness in cortex and medulla. pSWE data obtained in cortex
- Reliability criteria of interquartile range ≤30% of median value for pSWE and MRE enforced. pSWE also considered unreliable if ratio of valid measurements to total measurements ≤60%
- DCE data were analyzed using a 3 compartment

conflicting results also published⁸. reported⁷, though Perfusion⁹ and renal anisotropy may affect elastography measurements

- MRE correlated with DCE-MRI measured MTT in the vascular compartment suggesting a relation between stiffness and kidney perfusion
- MRE appears to be sensitive to fibrotic changes in dysfunctional kidneys and may be a potential tool for noninvasive assessment of kidney health

REFERENCES

- 1. Goldberg RJ, Weng FL, Kandula P. Acute and Chronic Allograft Dysfunction in Kidney Transplant Recipients. Medical Clinics. 2016;100(3):487-503.
- 2. Lee CU, Glockner JF, Glaser KJ et al.. MR Elastography in Renal Transplant Patients and Correlation with Renal Allograft Biopsy: A Feasibility Study. Academic Radiology 2012;19(7):834-841.
- 3. Marticorena Garcia SR, Fischer T, Durr M et al. Multifrequency Magnetic Resonance Elastography for the Assessment of Renal Allograft Function. Investigative Radiology. 2016;51(9):591-595
- 4. Stock KF, Klein BS, Vo MT et al. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc. 2010;46(2-3):139-148
- 5. Dzyubak B, Glaser K, Yin M, et al. Automated Liver Stiffness Measurements with Magnetic Resonance Elastography. Journal of magnetic resonance imaging : JMRI 2013;38(2):371-379.
- 6. Yamamoto A, Zhang J, Rusinek H et al. Quantitative Evaluation of Acute Renal Transplant Dysfunction with Low-Dose Three-dimensional MR Renography. Radiology. 2011;260(3):781-789
- 7. He WY, Jin YJ, Wang, WP et al. Tissue Elasticity Quantification by Acoustic Radiation Force Impulse for the Assessment of Renal Allograft Function. Ultrasound in Medicine and Biology. 2014;40(2):322-329
- 8. Marticorean SR, Guo J, Durr M et al. Comparison of ultrasound shear wave elastography with magnetic

MRE MTT - vascular compartment (s) MRE corticomedullary stiffness (kPa)

model⁶ which output mean transit time (MTT) over the

vascular, tubular and loop of Henle compartments, as

well as providing renal plasma flow (RPF) and GFR

Figure 3. Plots displaying correlation between MRE corticomedullary stiffness and GFR (left) and MTT in the vascular compartment (right)

resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol. 2017

9. Warner L, Yin M, Glaser KJ et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR Elastography. Investigative Radiology. 2011;46(8):509-514