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Problem and Motivations

d Fast data acquisition in Magnetic Resonance Imaging (MRI) is
vastly in demand and scan time directly depends on the number
of acquired k-space samples.

Current Issues:

d The clinical gold standard GRAPPA method [1] generates noisy
reconstruction in highly accelerated data acquisition.

d Deep learning-based MRI reconstruction approaches [2,3,4,5]
need to learn from massive datasets through the training
processes and cant handle k-space data with different
undersampling patterns, and different number of coils. Their
networks must be trained from scratch every time with new
training datasets, acquired under new configurations.

Proposed Solution:

d In this work, we developed the generalized deep neural network-
pased method without any training data Iinvolved using
convolutional neural network for parallel MRI reconstruction. Our
method can be categorize among the unsupervised energy-
based methods [6,7].

d Our method only needs the single undersampled multi-coil k-
space data for reconstruction.

d Two deep loss functions including non-regularized and
regularized are proposed for parallel MRI reconstruction.
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NLDpMRI: Main Idea

Our proposed method (NLDpMRI) includes

U-net

[8] convolutional network with deep

loss function. In our reconstruction process,

we O
netwo

ptimize the loss function over the
rk parameters.

The following equations are the proposed

Non-Learning based Deep Parallel MRI Reconstruction (NLDpMRI)
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FIG 2. Left to right: Gold standard
reconstruction result using full k-space
data, zero-filled reconstruction result,
GRAPPA reconstruction result, and non-
regularized NLDpMRI reconstruction
result all with undersampling factor of
2x2. NLDpMRI results in better guality
Image compared to GRAPPA.

FIG 3. Left to rnight: Gold standard
reconstruction result using full k-space
data, non-regularized NLDpMRI
reconstruction result, and regularized
NLDpMRI reconstruction result all with

=0.0029 undersampling factor of 2x2.
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FIG 1. NLDpMRI Framework

Conclusion

1 We propose a generalized method to solve MRI parallel image
reconstruction problem using deep neural networks without any
training data involved.

The proposed approach eliminates the need to collect massive
datasets for training purposes, any form of normalization, and
transfer learning techniques.

Experimental results on real MRI acquisitions show that our
proposed method outperforms the clinical gold standard

GRAPPA method [1].
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