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Figure 4. Masks for each

phantom in axial, sagittal ,

and coronal planes. Each

phantom was generated by

a magnification in x/y/z of

either the male or female

phantom from the Virtual

Family. Magnifications are

shown above each

phantom.

HEAD PHANTOMS

Direct learning methods

Obtaining more trainable

solutions: projection over convex

sets (POCS) shimming

-Shims are designed to be

predictable by ridge regression of

features, using a POCS iterating

over several projections:

- Projection 1. A few conjugate-

gradient (CG) steps are performed

to update shims using the variable-

exchange MLS method.

- Projection 2. Shims are

projected onto the set predictable by

A) Linear ridge regression (POCS-

RR) or

B) Random forest regression7

(POCS-RF)

and the new target phase is set to

that of the profile generated by the

current shim solution.

- Termination: is determined in

the 1st fold of a 10-fold cross-

validation; POCS iterations are

stopped when the shim profile error

begins increasing (to avoid

overfitting), and all remaining folds

stop at the same number of

iterations.

Predictions are made by applying

the feature projection learned

from (and enforced in) the training

shims.

LEARNING METHODS

Learning methods

• Nearest neighbors (NN)

• k-nearest neighbors (kNN)

-with 5 neighbors

• Kernelized nearest neighbors

(KNN)

-Using a Gaussian kernel with

unit standard deviation

• Principal components regression

(PCR)

-with 10 components

-1 run split into real/imaginary

components

-1 run split into magnitude/phase

(PCRmp)

POCS shimming methods

• POCS Ridge regression (POCS-RR)

• POCS Random Forest (POCS-RF)

Figure 5. POCS shim

design process.

Algorithm iterates over 2

projections: shims

minimizing profile error

and those predictable by

(a) linear ridge regression

or (b) random forest

regression of the

features. The phase

profile is updated after

projection onto the 2nd

set.

…But not too trainable:

Mitigating overfitting with POCS:

The POCS shimming methods are capable of

overfitting the training data. Steps are taken to

avoid this:

1. Run POCS shimming with 1st fold of 10-

fold cross-validation, calculating validation

error (for the data not trained on)

concurrently:

2. Stop when validation error increases, note

the number of iterations = X & exclude this

validation data from all test sets.

3. Run POCS shimming for remaining 9 folds,

stopping at X iterations blindly.

Figure 6. Example learning curve for POCS shimming methods.

RESULTS 

Figure 7. Best, median, and worst slice shims are shown for each learning method, compared to the results from the best directly designed

(tailored) shims. The standard deviation of each excitation profile (as a percentage) is shown above each sample. A) shows the results with

a B1
+ map neighborhood of 3 and the sign features used, and b) shows results for a neighborhood of 1 with cross-term features.

a) b)Case 1: B1
+ neighborhood =3, + sign features, POCS run to convergence Case 2: B1

+ neighborhood =1, + cross-term features, POCS early termination

Excitation Profiles

The improvement of the POCS-RR method in Case 2

(Fig 8b) over Case 1 (Fig 8a) shows the importance of

meaningful feature selection; a better result was

achieved using fewer raw B1
+ map features by

introducing cross-terms and terminating the POCS shim

training early to avoid overfitting. This resulted in more

homogeneous profiles overall. However, the POCS-RF

method performed slightly better in Case 1 than Case 2,

emphasizing that there is no “one-size-fits all” optimal

feature set across learning methods.

Principal components regression (PCR/PCRmp), k-

nearest neighbors (kNN) and kernelized NN (KNN)

methods resulted in very non-uniform profiles. The

POCS-RR, POCS-RF, and NN methods were the

only .methods to improve uniformity over the

circularly polarized (CP) mode (the best out-of-the-

box solution). From Fig. 8 it is clear that direct

design still performs significantly better than most

of the learning methods; however, several methods

perform decently, with POCS-RR achieving the
best homogeneity overall.

Case 2

Figure 8. Standard deviation of the excitation profiles generated by the predicted

shims, for each learning method; the same is shown for the profiles generated by

direct design of shims. The green line indicates the median of the circularly

polarized mode.

Excitation Uniformity

b) Case 2Case 1a)
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Supervised learning methods can potentially save on time lost in the scanner

for patient-tailored RF shimming, both in terms of scan time and compute

time. The performance of the POCS-RR and -RF shim methods suggest an

advantage of integrating the prediction method into shim design, rather than

designing and predicting in series.

DISCUSSION

The POCS shim methods performed best to predict RF shims. The gains in

performance of predicted shims are substantial compared to other methods.

Although here we have enforced predictability via ridge regression or random

forests (2nd projection), this step could be replaced by other learning

methods.

The learning methods that interpolate across training shims (kNN, KNN,

PCR, PCRmp) fail because they aim to minimize the shim weight error

instead of profile uniformity, which is the true target.

Shim performance of the POCS-RR method was comparable to that of

direct design with the exception of several outliers. While POCS-RF

performed slightly worse as a whole, the distribution of shim errors is tighter

(case 1), sacrificing prediction accuracy for consistency.

RF shim prediction could also impact patient safety in the form of RF

heating. Methods that impose a unit-sum weighted average over the training

set boast an advantage in meeting specific absorption rate (SAR) constraints;

if all of the solutions in the training set meet SAR constraints, then due to the

convexity of the constraints, the predicted shims will also satisfy them.

Several methods (NN, kNN, KNN) meet this requirement already, and POCS-

RR should be possible to formulate this way also. This could obviate the

need for SAR calculation for (predicted) RF shims at the scanner, and

potentially enable more precise SAR constraints, since the computational

burden is all at training time, not at the scanner.
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At high MRI field strengths (7T+), the transmit RF field (B1
+) becomes very

non-uniform, and resulting images contain unwanted shading. Patient-tailored

radiofrequency (RF) shimming is capable of correcting for this inhomogeneity

on a patient-by-patient basis by adjusting the magnitudes and phases of each

coil in a multicoil array.1,2 Higher numbers of coils provide more degrees of

freedom to shape the transmit field.3

INTRODUCTION

Fig 1. Example of inhomogeneous

transmit field in brain at 7T

(simulated). Circularly polarized

(CP) mode is shown versus the

tailored result.

The current workflow increases time in the scanner.

1. Measure patient B1
+ maps: This is scan-time 

intensive especially with large-numbers of coils.

2. Calculate optimal RF weights:  Solving the (non-

convex) magnitude least squares (MLS) problem is 

a computationally intensive step, and it is difficult to 

find a global optimum.4

The proposed workflow mitigates this:

1. Measure patient B1
+ maps (or subset of typical B1

+

map data); extract B1
+ features 

2. Apply a learned transform to predict RF shims 
directly – computationally cheap

CP mode

Tailored shim result

METHODS

Head phantoms B1
+ maps were simulated for phantom head

morphologies (1 male and 1 female) derived from the Virtual

Family5 for a 36-channel coil at 7T using XFDTD (Remcom

Inc., State College, PA, USA) (Fig. 2). Ten simulations were

performed, with different magnifications of the original 2

phantoms. Each phantom’s mask in 3 dimensions is shown in

Figure 5 (right) along with the magnifications applied to the

original phantom dimensions. This resulted in a total of 310

axial slices of B1
+ data with 2mm isotropic resolution.

Shim design: A variable exchange magnitude least squares

(MLS) method4,6 with 100 random starts was used to design

shims for each axial slice. Solutions with lowest B1
+

inhomogeneity were used to train and test several learning

methods using 10-fold cross-validation.

Fig. 2. B1
+ maps

were simulated for

a 36ch coil at 7T

using XFDTD.

Training Feature Set

For each slice, features used for training consisted of:

1) The standard deviations of the within-mask x & y

coordinates

2) The centroid of the brain mask in x & y

3) The central Fourier Transform coefficients of the

B1
+ field maps for each coil

4) The z-position of the slice within the coil

5) 1st order cross-terms of the above features.

6) The sign of (1-4) above.

Features were normalized to zero mean and unit

standard deviation.

The effect of varying the number of Fourier Transform

coefficients used for training was explored, and two

feature set configurations were compared:

1. Case 1: Neighborhood of 3 coefficients (Fig 3), no

cross-terms.

2. Case 2: Neighborhood of 1 coefficient, no sign

features

Fig 3. Central Fourier-

transform coefficients

are extracted from B1
+

maps for each coil, slice,

and subject.

The normalized root-mean square

errors (NRMSE) between the best

directly designed and predicted

shims (Fig 9) are very high, and not

indicative of the degree of profile

uniformity. These high errors are due

to the non-convexity of the

problem—this implies many

solutions exist which produce

similarly homogeneous fields, but

have very different shim coefficients.

This motivates the POCS methods,

which enforce similarity in the target

shims before interpolating over

them.

Shim Weight Errors

Figure 9. Shim coefficient errors for each

learning method tested, compared to the

best direct designed shims for each slice.

Shims predicted with the POCS methods

are also compared to shims from the direct

design.
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The analysis of the neighborhood size of B1
+ map

Fourier coefficients necessary (for NN) shows that

inclusion of a single coefficient from each coil helps

shim performance of the nearest neighbors method

greatly; after this, utility of including larger

neighborhood sizes falls off.

Figure 10. Standard deviation of the excitation profiles generated by the

nearest-neighbor-predicted shims versus the neighborhood size of the

Fourier transformed B1
+ maps used for training.

B1
+ map Feature Analysis


