Predicting Multi-coll RF Shims via Machine Learning
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INTRODUCTION RESULTS
At high MRI field strengths (7T+), the transmit RF field (B,*) becomes very Excitation Profiles
non-uniform, and resulting images contain unwanted shading. Patient-tailored
radiOfrequenCy (RF) Shimming IS Capable of Correcting for this inhomogeneity a) Case 1: B,* neighborhood =3, + sign features, POCS run to convergence b) Case 2: B,* neighborhood =1, + cross-term features, POCS early termination

on a patient-by-patient basis by adjusting the magnitudes and phases of each
coil in a multicoil array.t> Higher numbers of coils provide more degrees of
freedom to shape the transmit field.* T ——

Direct NN kNN KNN PCR PCRmp POCS-RR POCS-RF Direct NN KNN KNN PCR PCRmp POCS-RR POCS-RF ,

Best Best

1.5 1.5

7.5 : L

Median . ‘ ‘ ‘

The current workflow increases time in the scanner.

1. Measure patient B,* maps: This is scan-time
Intensive especially with large-numbers of coils.

2. Calculate optimal RF weights: Solving the (non-
convex) magnitude least squares (MLS) problem is
a computationally intensive step, and it is difficult to T
find a global optimum.#
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Figure 7. Best, median, and worst slice shims are shown for each learning method, compared to the results from the best directly designed
(tailored) shims. The standard deviation of each excitation profile (as a percentage) is shown above each sample. A) shows the results with
a B;* map neighborhood of 3 and the sign features used, and b) shows results for a neighborhood of 1 with cross-term features.

The proposed workflow mitigates this:
1. Measure patient B,* maps (or subset of typical B,*
map data); extract B,;* features

2. Apply a learned transform to predict RF shims - .
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(simulated).  Circularl larized . - . .
(gg\)u ?nide IS sILCouwiryverr)guasnztﬁe EXCItatlon Unlformlty
tailored result. Principal components regression (PCR/PCRmp), k-
nearest neighbors (kNN) and kernelized NN (KNN) a) Case 1 b) Case 2
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(MLS) method*® with 100 random starts was used to design (Fig 8b) s (CEeE L (A 8a) SWOHE Ui MpeiEreE ol Figure 8. Standard deviation of the excitation profiles generated by the predicted
shims for each axial slice. Solutions with lowest B.* meaningful feature selection; a better result was shims, for each learning method; the same is shown for the profiles generated by
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. : : : achieved using fewer raw B;* map features by direct design of shims. The green line indicates the median of the circularly
|nh?hm3gene_|ty ]\-Iée;’el dused 0 tlr'ilunt' and test several learning iIntroducing cross-terms and terminating the POCS shim polarized mode.
o Methods using 1U-1old cross-valldation. B, maps training early to avoid overfitting. This resulted in more
Training Feature Set homogeneous profiles overall. However, the POCS-RF

method performed slightly better in Case 1 than Case 2,

emphasizing that there is no “one-size-fits all” optimal . .
feature set across learning methods. Shlm W9|ght Errors

For each slice, features used for training consisted of:

1) The standard deviations of the within-mask x & y
coordinates

2) The centroid of the brain mask in x & y

The normalized root-mean square

3) The central Fourier Transform coefficients of the 50 errors (NRMSE) between the best
B,* field maps for each coil : T ! | | |
4) The z positign of the slice within the coil B,” map Feature Analysis o l dlhr'eCtIy(F'deS)S)Igned anfclj' hprechICted
i w | 1. .o shims (FIg are very high, and not
5) 15t order cross-terms of the above features. < 60 A T 1P DA indicative of the degree of profile
6) The sign of (1-4) above. - | = 1AM LB H ' uniformity. These high errors are due
. : S + o 100} H EI ' .
Features were normalized to zero mean and unit S s 3 | 0 i E H T LT to the non-convexity of the
standard deviation. s | i . | I : o problem—this implies many
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The _ef_fect of varying the_n_umber of Fourier Transform 8 ol ‘T‘ . . | S solutions exist which  produce
coefficients use_d for_ training was explored, and two g é ; é i ; | & & g similarly homogeneous fields, but
feature set configurations were compared: - T T T Figure 9. Shim coefficient errors for each | have very different shim coefficients.
1. Case 1: Neighborhood of 3 coefficients (Fig 3), no  |Fig 3. Central Fourier- — e 1 3 5 7 9 11 learning method tested, compared to the i i
J ( d ) iei one 4 i - best direct designed shims for each slice. This motivates the POCS methOdS’
t transform  coefficients B,* Map DFT Neighborhood Size : T
cross-terms. are extracted from B,* Shims predicted with the POCS methods | Which enforce similarity in the target
2 Case 2: Neighborhood of 1 coefficient, no sign maps for each coil, slice, Figure 10. Standard deviation of the excitation profiles generated by the are also compared to shims from the direct shims before interpolating over
features and subject. nearest-neighbor-predicted shims versus the neighborhood size of the design.
Fourier transformed B,* maps used for training. them.
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The POCS shim methods performed best to predict RF shims. The gains in
performance of predicted shims are substantial compared to other methods.
Although here we have enforced predictability via ridge regression or random

Inclusion of a single coefficient from each coil helps
shim performance of the nearest neighbors method

phantom in axial, sagittal ,
and coronal planes. Each
phantom was generated by | axial
a magnification in x/y/z of

either the male or female

! | . _ ' . . greatly, after this, utility of Including larger iy . . .
phantom from the Vi Sag.nall :_l :l :_l :r*l ,‘ E! E! ﬁ! 5! ;,! g :;)reetﬁgsds(z projection), this step could be replaced by other learning
shown above each -
phantom. eorond! l l l . . ' . ' I I ' l ] The learning methods that interpolate across training shims (KNN, KNN,

PCR, PCRmp) fail because they aim to minimize the shim weight error
LEARNING METHODS Instead of profile uniformity, which is the true target.

Shim performance of the POCS-RR method was comparable to that of

Learning methods Obtaining more trainable But not too trainable: direct design with the exception of several outliers. While POCS-RF
solutions: projection over convex I.\}I.'t'u Po 00 ﬁtr.‘a el’th POCS: performed slightly worse as a whole, the distribution of shim errors is tighter
Direct learning methods sets (POCS) shimming tigating overiitiing wi ' (case 1), sacrificing prediction accuracy for consistency.
e Nearest neig.hbors (NN) —Shér_n? " ar?3 c_lctlesmned tc_) b(?c The POCS shimming methods are capable of RF_ shim prediction f:ould also impact pa_tient safety in the form of _RF
+ k-nearest neighbors (kNN) predictable Dy ridge regression o overfitting the training data. Steps are taken to heating. Methods that Impose a unlt—sum_ Welghted_ average over the tramlng
-with 5 neighbors features, using a POCS iterating Y [ set boast an advantage in meeting specific absorption rate (SAR) constraints;
+ Kernelized nearest neighbors over several projections: If all of the solutions in the training set meet SAR constraints, then due to the
(KNN) - Projection 1. A few conjugate- 1. Run POCS shimming with 1st fold of 10- convexity of the constraints, the predicFed sh?ms will also satisfy them.
-Using a Gaussian kernel with gradient (CG_) stepg are perfqrmed fold cross-validation, calculating validation Several methods (NN, KNN, KNN) meet_thls requwement.already, and_POCS-
unit standard deviation to update shims using the variable- error (for the data not trained on) RR should be possible to formulate this way also. This could obviate the
. Principal components regression exchange MLS method. concurrently: need for SAR calculation for (predicted) RF shims at the scanner, and
(PCR) - Projection 2. Shims are potentially enable more precise SAR constraints, since the computational
-with 10 components projected onto the set predictable by Figure 6. Example learning curve for POCS shimming methods. burden is all at training time, not at the scanner.
components RR) or |
-1 run split into magnitude/phase B) Random  forest  regression’ CONCLUSION
: Supervised learning methods can potentially save on time lost in the scanner
and the new target phase is set to tor patient-tailored RE shimming. both in terms of 1 time and comout
POCS shimming methods that of the profile generated by the of patient-lafiore =himming, DO 1N tetms Of scan tme and compute
. _ _ current shim solution. time. The performance of the POCS-RR and -RF shim methods suggest an
POCS Ridge regression (POCS-RR) Termination: is determined i advantage of integrating the prediction method into shim design, rather than
* POCS Random Forest (POCS-RF) ' designing and predicting in series.

the 1st fold of a 10-fold cross-
_ _ validation: POCS iterations are
Figure 5. POCS shim : :
design Orocess. stopped when the shim profile error

Algorithm iterates over 2 begins Increasing (to avoid [1] TS Ibrahim et al, MRI 19:1339-1347 (2001). [2] WMao et al, MRM 56:918-922 (2006). [3] R Lattanzi et al, MRM
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minimizing profile error overflttlng), and all [Sinelrlintg folds POCS Shlm iterations ) Setsompop et al, MRM 59:908-915 (2008). [7] L. Breiman, Machine Learning 45:5-32 (2001).
stop at the same number of

and those predictable by . . 2. Stop when validation error increases, note
& (a) linear ridge regression Iterations.

hime or (b) random forest the number of iterations = X & exclude this
predictable by regression  of  the . . validation data from all test sets. ACKNOWLEDGEMENTS
Predictions are made by applying

linear ridge features. The phase o 3. Run POCS shimming for remaining 9 folds,
regression OR profile is updated after the feature projection learned stopping at X iterations blindly

random forest SR . . .
prctnectlon onto the 2 from (and enforced in) the training
sel. .
shims.
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